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Abstract

This study presents the failure criteria for a permeable crack embedded in an in®nite piezoelectric solid, which is
separately subjected to a set of uniform electromechanical loads. Based on the equivalent inclusion method, a

permeable crack is treated as an elliptical inclusion where its elastic moduli and piezoelectric constants are
considered to be zero, while the dielectric constants remain ®nite. In addition, the interaction between the crack and
the applied electromechanical loading is examined by introducing the change of total potential energy function.

With this energy function, the energy release rates and the critical loads for fracture are acquired separately in a
closed form for a simple tension, in-plane and out-plane shears, and normal electric ¯ux density applied. The closed
forms for energy release rate and critical electromechanical loading reveal that they are a function of the aspect

ratio of the elliptical crack, the type of the electromechanical loading, and the piezoelectric properties. Moreover,
analysis results indicate that the distinct electric ®elds can retard the dilation of the elliptical crack, particularly for
an in-plane electric ®eld incited in perpendicular to the crack faces. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Piezoelectric solid; Permeable crack; Equivalent inclusion M; Energy release rate; Aspect ratio; Eshelby tensor; Gri�th

theory

1. Introduction

Piezoelectric materials have been extensively applied over the last decade to diverse areas such as
electromechanical transducers, electronic packaging, solar projector, thermal sensors, underwater
acoustic, and medical ultrasonic imaging. This trend may account for why these kinds of materials
constitute an important branch of the recently emerging technologies of modern engineering materials.
A prominent feature of utilizing piezoelectric materials is the distribution of preexisting defects from
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which crack propagation can initiate, thereby degrading the strength and sti�ness of the materials.
Therefore, e�ectively using piezoelectric materials mandates that the electroelastic response be clearly
analyzed from a micromechanics perspective so that the importance of defects (or preexisting cracks)
can be thoroughly understood.

Parton (1976) pioneered the analysis of piezoelectric crack problems from a fracture mechanics
perspective. That investigation assumed that a slit crack in a piezoelectric solid is traction free, but the
electric potential and normal component electric displacement are permeably continuous across the
cracked surface. Deeg (1980) proposed the method of distributed dislocations and electric dipoles to
resolve an arbitrarily oriented slit crack with impermeable electric ®elds in a piezoelectric solid. Pak
(1990, 1992) employed a complex variable approach to examine the mode III crack problem in a
piezoelectric solid and the in-plane electrostatic ®elds in and around a circular piezoelectric
inhomogeneity which was subjected to anti-plane loading. In addition, that investigation derived the
stress and electric ®eld intensity factors for di�erent electroelastic loading, which is valid only for a
circular inclusion. Kattis et al. (1997, 1998) adopted two-phase potentials methods to study piezoelectric
smart composites and worked out for the case the anti-plane deformation. In their study, the
piezoelectric composite consisting of two discrete phases of hexagonal piezoelectric crystals is subjected
to mechanical and electric loads causing out-of-plane displacements and in-plane electric ®eld. In a
related investigation, Dunn (1994) employed the equivalent inclusion method to resolve the closed form
of the energy release rate for a permeable elliptical crack in a transversely isotropic piezoelectric solid
simultaneously subjected to the antiplane shear stress (mode III) and the in-plane electric loading
actuated in perpendicular with crack faces. The so-called permeable crack is that the dielectric constant
of crack does not vanish, i.e., electric ®eld can propagate through the crack volume when the small
crack volume contains air or some other gas.

However, further e�orts must be expended to perform a fracture study of a piezoelectric solid
containing a permeable elliptical crack subjected to mechanical loading in mode I, II, and III as well as
anti-plane electric ®eld, in-plane electric ®eld incited in parallel or perpendicular with crack faces.
Accomplishing such a task would allow us to fully exploit the advantages of piezoelectric materials.
Therefore, in this study, we study the closed form of the energy release rate and the critical
electromechanical loads for a permeable elliptical crack involved in an in®nite piezoelectric solid, which
is solely subjected to either one of three kinds of mechanical loading or one of three kinds of electric
loading.

The rest of this paper is organized as follows. By modeling the disturbed strain and electric ®eld
induced by inclusions, the anisotropic inclusion method (see e.g. Huang and Kuo, 1996; Mura, 1987) is
employed to consider the inherently anisotropic coupled behavior of a piezoelectric material. Then, a
uni®ed and explicit expression for the coupled electroelastic Eshelby tensors is obtained for the
piezoelectric ellipsoidal inclusions in a transversely isotropic medium. Next, the feasibility of using the
subsequent tensors in the analysis of a permeable crack is studied. Finally, based on the Gri�th (1921)
theory, an interaction energy density function is introduced to fully consider the interaction between
electromechanical loads and crack extension forces. In light of the results presented herein, the energy
release rates and the critical electromechanical loads are explicitly obtained for the fracturing of a
piezoelectric cracked solid subjected to di�erent applied loads.

2. Electroelastic Eshelby tensors

The Eshelby tensor (Eshelby, 1957) for isotropic elasticity serves as the foundation for the theory of
micromechanics of materials as it is a prerequisite for resolving inclusion problems. This tensor has
numerous applications in diverse areas such as fracture mechanics, composite materials, phase
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transformation, thermal problems and for materials with defects. Mura (1987) obtained many intriguing
results via this tensor. In this section, we establish a similar tensor to resolve piezoelectric inclusion
problems.

Following the formulation of Huang and Kuo (1996) we start by considering an in®nitely extended
piezoelectric solid D containing an ellipsoidal piezoelectric inclusion O whose electroelastic moduli LiJMn

are the same as the matrix. The shape of reinforcement is considered to be ellipsoid, which can treat
composite reinforcement geometrical con®gurations ranging from the thin ¯ake to continuous ®ber
reinforcement. Let Z �Mn be eigenstrain (or stress-free transformation strain) and eigenelectric ®eld (or
electric displacement-free transformation electric ®eld) in the inclusion O, and zero in the matrix DÿO.
Herein the electroelastic moduli LiJMn and eigen®eld Z �Mn are de®ned as follows (Huang and Kuo,
1996):

LiJMn �

8>><>>:
Cijmn J, MR3,
enij JR3;M � 4,
eimn J � 4;MR3,
ÿkin J, M � 4,

Z �Mn �
�
e�mn MR3,
ÿE �n M � 4,

�1�

where Cijmn denotes the elastic moduli measured at a constant electric ®eld, eimn piezoelectric coe�cient
measured at a constant strain or electric ®eld, kin dielectric constant measured at a constant strain, e �mn

eigenstrain, and E �n eigenelectric ®eld.
When the eigenstrain and eigenelectric ®eld in the inclusion are uniform, the induced strain emn, and

the electric ®eld En in O can be expressed as

emn � Smnabe�ab ÿ Smn4bE
�
b, ÿ En � S4n4bE

�
b ÿ S4nabe�ab, �2�

or written in the following uni®ed expression

ZMn � SMnAbZ
�
Ab �

�
Smnabe�ab ÿ Smn4bE

�
b, MR3,

S4nabe�ab ÿ S4n4bE
�
b M � 4,

�3�

where SMnAb represents a set of four tensors that are referred to as the electroelastic Eshelby tensors
analogous to the Eshelby tensor for elasticity. Unless stated otherwise, conventional indicial notation is
used where repeated lowercase subscripts are summed over 1 to 3; meanwhile, uppercase subscripts are
summed over 1 to 4.

A permeable crack, in which the electric potential and normal component of the electric displacement
are continuous across the crack surfaces, are modeled in this work as an elliptical (a3 41, a1/a2=a )
inclusion oriented with its generatrix parallel to x3-axis. In addition, components of the electroelastic
Eshelby tensors for elliptical inclusions in a transversely isotropic solid with the x3-axis normal to the
plane of isotropy can be expressed as (Huang and Yu, 1994):

S1111 � �2� 3a�C11 � aC12

2�1� a�2C11

, S2222 � �3a� 2a2�C11 � aC12

2�1� a�2C11

,

S1122 � ÿaC11 � �2� a�C12

2�1� a�2C11

, S2211 � ÿaC11 � �a� 2a2�C12

2�1� a�2C11

,

S1133 � C13

�1� a�C11
, S2233 � aC13

�1� a�C11
,
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S1143 � e31
�1� a�C11

, S2243 � ae31
�1� a�C11

,

S1212 � S1221 � S2112 � S2121 � �1� a� a2�C11 ÿ aC12

2�1� a�2C11

,

S1313 � S1331 � S3113 � S3131 � 1

2�1� a� ,

S2323 � S2332 � S3223 � S3232 � a

2�1� a� ,

S4141 � 1

1� a
, S4242 � a

1� a
: �4�

In arriving at the foregoing equations, the generalized Voigt two-index notation:

1141, 2242, 3343, 2344, 3145,

1246, 4147, 4248, 4349, �5�
is adopted to represent the electroelastic moduli LiJMn of the solid.

3. The ellipsoidal inhomogeneity inclusion

Until now, both the matrix and the inclusion have been assumed to have the same electroelastic
constants. Next, consider a case involving an ellipsoidal inhomogeneity inclusion, where matrix and
inclusion have di�erent electroelastic constants. Moreover, consider a su�ciently large piezoelectric
composite D, which contains an ellipsoidal inhomogeneity O with the electroelastic moduli L �iJMn. The
surrounding piezoelectric matrix is denoted by DÿO and has the electroelastic moduli LiJMn. Let the
composite be subjected to a far-®eld traction and electric displacement S0

iJni, on the boundary with
outward unit normal vector ni, where shorthand notation S0

iJ representsX0
iJ

�
(
s0ij JR3,

D0
i J � 4,

�6�

with s 0
ij and D 0

i being the applied stress and electric displacement, respectively.
If no inhomogeneity exists, the strain and electric ®eld, Z 0

Mn, uniformly distribute over the entire
domain. The inhomogeneity provides a disturbance in local ®elds of both the matrix and inhomogeneity.
Let Sm

iJ and SO
iJ denote the local disturbances of the stress and electric displacement in the matrix and

inhomogeneity, respectively. Hereafter the superscripts `m' and `O' denote quantities in the matrix and
the inhomogeneity respectively. Then, the stress and electric displacement in the inhomogeneity can be
expressed as

X0
iJ

�
XO
iJ

� L�iJMn�Z 0
Mn � Z m

Mn � ZMn�: �7�
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According to the equivalent inclusion method (Eshelby, 1957), the stress and electric displacement in
inhomogeneity can be simulated in an equivalent inclusion with the electroelastic constants of the matrix
and a ®ctitious eigenstrain and eigenelectric ®eld, Z �Mn. Therefore, Eq. (7) can be written as

X0
iJ

�
XO
iJ

� L�iJMn�Z 0
Mn � Z m

Mn � ZMn� � LiJMn�Z 0
Mn � Z m

Mn � ZMn ÿ Z �Mn�: �8�

Since the applied load is uniform and the inhomogeneity is ellipsoidal, ZMn is also uniform in the
inhomogeneity (Huang and Yu, 1994), and it can be expressed as a linear function of the ®ctitious
eigen®elds Z �Mn, i.e.,

ZMn � SMnAbZ
�
Mn: �9�

Therefore, the disturbance of stress and electric displacement in the inhomogeneity can be written by
substituting Eq. (9) into Eq. (8) as

XO
iJ

� LiJMnZ
m
Mn � LiJMn�SMnAb ÿ IMnAb�Z �Mn, �10�

where the shorthand notation IMnAb represents the second order and fourth order identity tensors,
respectively, i.e.,

IMnAb �
8<: �dmadnb � dmbdna�=2 M, AR3,
dnb M � A � 4,
0 otherwise

: �11�

The equivalent eigenstrain and eigenelectric ®eld, Z �Mn, are resolved by substituting Eq. (9) into the
equivalency condition (8). Thus, it can be expressed as follows:

hiJMnZ
�
Mn � HiJnM

X0
nM

�12�

where

hiJMn � �L�iJAb ÿ LiJAb�SAbMn � LiJMn, �13�

HiJnM � IiJnM ÿ L�iJAbL
ÿ1
AbnM: �14�

Since a permeable crack can be understood as the inhomogeneity where its elastic moduli C �ijmn and
piezoelectric constants e �imn vanish while dielectric constants K �in remain ®nite, hiJMn and HiJnM can be
simpli®ed in the following matrix forms through the Voigt two-index notation (5):

L. Chao, J.H. Huang / International Journal of Solids and Structures 37 (2000) 5161±5176 5165



26666666666664

h1111 h1122 h1133 0 0 0 0 0 h1143
h1122 h1111 h1133 0 0 0 0 0 h2243
h3311 h3311 h3333 0 0 0 0 0 h3343
0 0 0 h2323 0 0 0 h2342 0
0 0 0 0 h2323 0 h1341 0 0
0 0 0 0 0 h1122 0 0 0
0 0 0 0 h1413 0 h1441 0 0
0 0 0 h2423 0 0 0 h2442 0
h3411 h3422 h3433 0 0 0 0 0 h3443

37777777777775
, �15�

26666666666664

H1111 0 0 0 0 0 0 0 0
0 H2222 0 0 0 0 0 0 0
0 0 H3333 0 0 0 0 0 0
0 0 0 H2323 0 0 0 0 0
0 0 0 0 H1313 0 0 0 0
0 0 0 0 0 H1212 0 0 0
0 0 0 0 H1413 0 H1414 0 0
0 0 0 H2423 0 0 0 H2424 0
H3411 H3422 H3433 0 0 0 0 0 H3434

37777777777775
: �16�

The non-zero entries of hiJMn and HiJnM in the above matrices are tabulated in Appendix A. With hiJMn

and HiJnM known, the equivalent eigen®elds Z �Mn in the system of Eqs. (12) can be explicitly solved.
Appendix B summarizes those results.

4. Energy release rates

To determine the crack extension force G, a calculation must be made of the change of total potential
energy when the crack is extended by the amount Da1 shown in Fig. 1. When the far-®eld surface
traction and electric ¯ux density, S0

iJni, is applied on the material's boundary, the change of total

Fig. 1. An elliptical crack in a piezoelectric solid with coordinates denoted the orientation of the crack.
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potential energy for the cracked piezoelectric solid is de®ned as

DW � 1

2

�
D

 X0
iJ

�
X
iJ

!
�U 0

J, i �UJ, i �dDÿ
�
jDj

 X0
iJ

ni

!
�U 0

J �UJ�dSÿ 1

2

�
D

X0
iJ

U 0
J, i

dDÿ
�
jDj

 X0
iJ

ni

!
U 0

J dS

�17�

where vDv denotes the boundary of the composite D.
Since UJ,i can be written as UJ,iÿZ �Ji+Z �Ji, Z

�
Ji is an equivalent eigenstrain and eigenelectric ®eld in O

when the inhomogeneity is simulated by an equivalent inclusion, we have

X0
iJ

UJ, i �
X0
iJ

�UJ, i ÿ Z �Ji � Z �Ji � � LiJMnU
0
M, n�UJ, i ÿ Z �Ji � Z �Ji � �

X
iJ

U 0
J, i �

X0
ij

Z �Ji: �18�

With use of the equations of elastic equilibrium and Gauss' law of electrostatics:X
iJ

ni � 0 on j D j ,
X
iJ, i

� 0 in D, �19�

it can be demonstrated that�
D

X
iJ

U 0
J, i dD � 0, �20�

and �
D

X
iJ

UJ, i dD � 0: �21�

where Gauss' theorem on vDv has been used. Substituting Eqs. (18) and (20) into (17) leads to

DW � ÿ1
2

�
O

X0
iJ

Z �Ji dx � ÿ1
2
�2pa1a2�

X0
iJ

Z �Ji, �22�

where 2pa1a2 denotes the volume per unit thickness of the elliptical crack. The above equation can be
easily used to calculate the change of the total potential energy since it involves only the applied
electromechanical loads and the equivalent eigen®elds.

The energy release rate per unit thickness for an in®nitesimal crack extension is de®ned as

G � ÿ@DW
@a1

: �23�

Substituting Z �Mn listed in Appendix B into Eq. (23) leads to

G21 � 4�a1 � a2�C11ps0
2

21

C 2
11 ÿ C 2

12

�24�

for the in-plane shear stress applied,
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G22 � �A0a2A2 � 4A2
0 a1C11 � a2A3k

�
11�ps0

2

22

A2
0 �C11 ÿ C12��C11 � C12�

�25�

for the tensile stress applied,

G23 � f�a2
2 �2a1 � a2�B 2

0k11 � a2B0��a1 � a2��3a1 � a2�e215 � 2a1�2a1 � a2�C44k11�k�11

� a2
1C44�2�a1 � a2�e215 � �2a1 � a2�C44k11�k� 211 �gps0

2

23=fB0�a2B0 � a1C44k
�
11�2g �26�

for the anti-plane shear stress applied,

G14 � ÿa2C44�e215 � C44�k11 ÿ k�11���a2
1B0 � a2�2a1 � a2�C44k

�
11�pD0 2

1

B0�a1B0 � a2C44k
�
11�2

�27�

for in-plane electric loading incited in parallel with crack faces,

G24 � ÿa2C44�e215 � C44�k11 ÿ k�11���a2�2a1 � a2�B0 � a2
1C44k

�
11�pD0 2

2

B0�a2B0 � a1C44k
�
11�2

�28�

for in-plane electric loading incited in perpendicular with crack faces, and

G34 � ÿA1a2�A0 ÿ A1k
�
11�pD0 2

3

A 2
0

�29�

for electric loading in anti-plane sense applied. The positive coe�cients A0±A3 and B0 appearing in
preceding equations are de®ned as

A0 � �2C33e
2
31 ÿ 4C13e31e33 � �C11 � C12�e233 ÿ 2C 2

13k33 � �C11 � C12�C33k33�, �30a�

A1 � ÿ2C 2
13 � C11C33 � C12C33, �30b�

A2 � �C11 � C12��ÿ2C13e31e33 � C11e
2
33 ÿ C 2

13k33 � C33�e231 � C11k33��, �30c�

A3 � �C11 ÿ C12��C11 � C12��C33e31 ÿ C13e33� 2, �30d�

B0 � e215 � C44k11: �30e�
Eqs. (24)±(26) are the closed forms of the energy release rate for an elliptical permeable crack embedded
in an in®nite piezoelectric solid under distinct types of mechanical loading. Correspondingly, being
subjected to di�erent types of electric loading, the closed forms of the release rates for the crack are
represented in Eqs. (27)±(29), in which the minus sign physically indicates that the distinct electric ®elds
can retard the crack propagation.

Next, as a numerical example to emphasize the physical dimension of these closed forms for the
energy release rate, lead zirconate titante (PTZ-5H) piezoceramic is illustrated herein. Its material
properties are represented as follows (Pak, 1992).

C11 � 126 GPa, C12 � 55 GPa, C13 � 53 GPa,
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Fig. 2. Energy release rate of PTZ-5H piezoceramic vs aspect ratio of the crack under three kinds of mechanical loading applied.

Fig. 3. Energy release rate of PTZ-5H piezoceramic vs aspect ratio of the crack under three types of electric ®elds incited.

L. Chao, J.H. Huang / International Journal of Solids and Structures 37 (2000) 5161±5176 5169



C33 � 117 GPa, C44 � 35:3 GPa,

e31 � ÿ6:5 C=m2, e33 � 23:3 C=m2, e15 � 17 C=m2,

k11 � 1:51� 10ÿ8 C=Vm, k33 � 1:30� 10ÿ8 C=Vm,

k�11 � k�22 � k�33 � 8:85� 10ÿ12 C=Vm: �31�
where GPa denotes the giganewtons per square meter, C represents the charge in coulombs, and V is the
electric potential in volts. According to the numerical results, Fig. 2 exhibits that the energy release rate
linearly increases with respect to the extension of the aspect ratio (a1/a2) of the elliptical crack under
mechanical loading applied. This coincides with the conventional fracture criterion. Fig. 3 displays the
energy release rates versus the aspect ratio of the elliptical crack subjected to three distinct sense of
electric loading with the minus values of the energy release rate. This ®nding suggests that the electric
loading can diminish the dilation of the elliptical ¯aw. According to this Fig. 3, the in-plane electric
loading applied in perpendicular with crack faces signi®cantly in¯uences the retarding e�ect of the
dilation of the crack, compared with another two types of electric loading.

5. Critical electromechanical loads

The critical stress and electric displacement for the crack to be distended under distinct mechanical
loading or electric ®eld can be determined according to the Gri�th fracture criterion (see e.g. Gri�th,
1921)

@

@a1
�DW� 2pa1a2g� � 0, �32�

where g denotes the surface energy density of the piezoelectric material. Substituting Z �Mn tabulated in
Eqs. (B1)±(B14) into Eq. (32) leads to

sc21 �
���������������������������������
a2�C 2

11 ÿ C 2
12�g

2�a1 � a2�C11

s
�33�

for the critical in-plane shear stress,

sc22 �
����������������������������������������������������������������
2A2

0 a2�C11 ÿ C12��C11 � C12�g
A0a2A2 � 4A2

0 a1C11 � a2A3k
�
11

s
�34�

for the critical tensile stress,

sc23 � f2a2B0�a2B0 � a1C44k
�
11�2gg1=2=fa2

2 �2a1 � a2�B 2
0k11 � a2B0��a1 � a2��3a1 � a2�e215

� 2a1�2a1 � a2�C44k11�k�11 � a2
1C44�2�a1 � a2�e215 � �2a1 � a2�C44k11�k� 211 g1=2 �35�

for the critical anti-plane shear stress,
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Dc
1 �

��������������������������������������������������������������������������������������������
ÿ2B0�a1B0 � a2C44k

�
11�2g

C44�B0 ÿ C44k
�
11��a2

1B0 � a2�2a1 � a2�C44k
�
11�

s
�36�

for the critical electric displacement in the x1 direction,

Dc
2 �

��������������������������������������������������������������������������������������������
ÿ2B0�a2B0 � a1C44k

�
11�2g

C44�B0 ÿ C44k
�
11��a2�2a1 � a2�B0 � a2

1C44k
�
11�

s
�37�

for the critical electric displacement in the x2 direction, and

Dc
3 �

���������������������������������
ÿ2A 2

0 g
A1�A0 ÿ A1k

�
11�

s
�38�

for the critical electric displacement in the x3 direction.
Fig. 4 depicts the numerical demonstration with PTZ-5H piezoceramic for the closed forms of the

critical stresses in Eqs. (33)±(35), where the critical stresses are monotonously decreased with respect to
the extension of aspect ratio of the elliptical crack. The critical anti-plane shear stress in this Fig. 4 has
an enormous value correlated with the critical in-plane shear stress and the tensile stress. This ®nding
suggests that the elliptical crack is di�cult to be ruptured under the mechanical loading applied in anti-
plane shear sense. Eqs. (36)±(38) are the closed forms of the critical electric displacement, in which the
value inside the root symbol is always negative. The negative value physically implies that the trade of
the crack propagation becomes retarded when electric ®eld loading is applied to the piezoelectric solid.

Fig. 4. The variation of critical stress for PTZ-5H piezoceramic with respect to aspect ratio subjected to three kinds of mechanical

loading.
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6. Conclusions

This study theoretically presents the fracture criterion in a closed form for an in®nite piezoelectric
solid containing a permeable elliptical ¯aw separately subjected to three modes of mechanical loading
and three forms of electric loading. The energy release rates are introduced herein to quantitatively
determine the crack extension force. In addition, the critical mechanical stress and critical electric
displacement are employed to forecast the trade of the crack propagation. Moreover, the closed forms
for energy release rate and critical electromechanical loading indicate that they are functions of the
aspect ratio of the crack, the type of the electromechanical loading, and the piezoelectric properties.
Furthermore, explicit results in this study demonstrate that the distinct electric ®elds can delay the crack
propagation. In addition, the in-plane electric ®eld induced perpendicularly with crack faces has a
profound in¯uence in terms of retarding the dilation of the elliptical crack. The results obtained herein
for a permeable elliptical crack containing in a piezoelectric solid subjected to one of the
electromechanical loading can be extended not only to resolve a permeable crack simultaneously
subjected to mechanical loading and electrical loading, but also to develop the fracture criterion for a
piezoelectric material containing multiple elliptical cracks.
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Appendix A

The non-zero components of hiJMn and HiJnM in Eqs. (15) and (16) respectively, are listed in the
following

h1111 � a�1� 2a��C 2
11 ÿ C 2

12�
2�1� a�2C11

, h1122 � a�C 2
11 ÿ C 2

12�
2�1� a�2C11

,

h1133 � a�C11 ÿ C12�C13

�1� a�C11
, h1143 � a�C11 ÿ C12�e31

�1� a�C11
,

h2222 � �2� a��C 2
11 ÿ C 2

12�
2�1� a�2C11

, h2233 � �C11 ÿ C12�C13

�1� a�C11
,

h2243 � �C11 ÿ C12�e31
�1� a�C11

, h3311 � a�C11 ÿ C12�C13

�1� a�C11
,

h3322 � �C11 ÿ C12�C13

�1� a�C11
, h3333 � ÿC

2
13

C11
� C33,

h3343 � ÿC13e31
C11

� e33, h2323 � C44

1� a
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h2342 � e15
1� a

, h1313 � aC44

1� a

h1341 � ae15
1� a

, h1413 � ae15
1� a

h1441 � ÿa�k11 � k�11�
1� a

, h2423 � ÿ e15
1� a

h2442 � ÿ�k11 � ak�11�
1� a

, h3411 � a�C11 ÿ C12�e31
�1� a�C11

h3422 � �C11 ÿ C12�e31
�1� a�C11

, h3433 � ÿC13e31
C11

� e33,

h3443 � ÿ�e
2
31 � C11k33�

C11

H1111 � H2222 � H3333 � 1

H1212 � H1313 � H2323 � 1

2

H1413 � H2423 � e15k
�
11

2�e215 � C44k11�

H1414 � H2424 � 1ÿ C44k
�
11

e215 � C44k11

H3411 � H3422 � �C33e31k
�
11 ÿ C13e33k

�
11�

2C33e
2
31 ÿ 4C13e31e33 � �C11 � C12�e233 ÿ 2C 2

13k33 � �C11 � C12�C33k33

H3433 � �2C13e31 ÿ �C11 � C12�e33�k�11
4C13e31e33 ÿ �C12 � C12�e233 � 2C 2

13k33 ÿ C33�2e231 � �C11 � C12�k33�

H3434 � 1ÿ �2C 2
13 ÿ �C11 � C12�C33�k�11

4C13e31e33 ÿ �C12 � C12�e233 � 2C 2
13k33 ÿ C33�2e231 � �C11 � C12�k33�

:

Appendix B

The equivalent eigen-strain and eigen-electric ®eld obtained from Eq. (12) are given below. For the in-
plane shear stress s 0

21 applied in piezoelectric solid:
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Z o
21 �
�1� a�2C11s021
a�C 2

11 ÿ C 2
12�

: �B1�

For the tensile stress s 0
22 applied in piezoelectric:

Z �11 � ÿf�C 3
11�e233 � C33k33�2 � C11�6C 2

33e
4
31 ÿ 24C13C33e

3
31e33 � 24C 2

13e
2
31e

2
33 � 4C12C33e

2
31e

2
33

ÿ 8C12C13e31e
3
33 � C 2

12e
4
33 � 2�2C33�ÿ3C 2

13 � C12C33�e231 � 4C13�3C 2
13 ÿ C12C33�e31e33

� C12�ÿ2C 2
13 � C12C33�e233�k33 � �6C 4

13 ÿ 4C12C
2
13C33 � C 2

12C
2
33�k2

33� � C 2
11��e233

� C33k33��5C33e
2
31 ÿ 10C13e31e33 � 2C12e

2
33 ÿ 5C 2

13k33 � 2C12C33k33� ÿ �C33e31

ÿ C13e33�2k�11� � C12�ÿ�2C33e
2
31 ÿ 4C13e31e33 � C12e

2
33 ÿ 2C 2

13k33 � C12C33k33��C33e
2
31

ÿ C13�2e31e33 � C13k33�� � C12�C33e31 ÿ C13e33� 2k�11�gs022=f�C11 ÿ C12��C11 � C12�

� �2C33e
2
31 ÿ 4C13e31e33 � �C11 � C12�e233 ÿ 2C 2

13k33 � �C11 � C12�e233g �B2�

Z �22 � f��2C33e
2
31 ÿ 4C13e31e33 � �C11 � C12�e233 ÿ 2C 2

13k33 � �C11 � C12�C33k33���1

� 2a�C 2
11�e233 � C33k33� � C11�e33�ÿ2�1� 4a�C13e31 � �1� 2a�C12e33� ÿ �1� 4a�C 2

13k33

� C33�e231 � 4ae231 � C12k33 � 2aC12k33�� � C12�C33e
2
31 ÿ C13�2e31e33 � C13k31����C11

ÿ C12��C11 � C12��C33e31 ÿ C13e33�2k�11�s022g=f�C11 ÿ C12��C11 � C12��2C33e
2
31

ÿ 4C13e31e33 � �C11 � C12�e233 ÿ 2C 2
13k33 � �C11 � C12�C33k33�2g �B3�

Z �33 � ÿf��e31e33 � C13k33��2C33e
2
31 ÿ 4C13e31e33 � �C11 � C12�e233 ÿ 2C 2

13k33 � �C11

� C12�C33k33��ÿ2C13e31 � �C11 � C12�e33��ÿC33e31 � C13e33�k�11�s022g=f2C33e
2
31

ÿ 4C13e31e33 � �C11 � C12�e233 ÿ 2C 2
13k33 � �C11 � C12�C33k33g2 �B4�

Z �43 � ��C33e31 ÿ C13e33��ÿ4C13e31e33 � �C11 � C12�e233 � C33�2e231 � �C11 � C12��k33 ÿ k�11��

ÿ 2C 2
13�k33 ÿ k�11��s022=�2C33e

2
31 ÿ 4C13e31e33 � �C11 � C12�e233 ÿ 2C 2

13k33 � �C11

� C12�C33k33�2 �B5�

For the anti-plane shear stress s 0
23 applied in piezoelectric solid:

Z �23 �
�1� a��C44k11�k11 � ak�11� � e215�k11 � k�11 � ak�11��s23

2�e215 � C44k11��e215 � C44k11 � aC44k
�
11�

�B6�
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Z �42 �
�1� a�e15�e215 � C44�k11 ÿ k�11��s23
�e215 � C44k11��e215 � C44k11 � aC44k

�
11�

�B7�

For in-plane electric loading D 0
1 incited in parallel with crack faces:

Z �13 �
�1� a�e15�e215 � C44�k11 ÿ k�11��D0

1

2�e215 � C44k11��ae215 � aC44k11 � C44k
�
11�

�B8�

Z �41 � ÿ
�1� a�C44�e215 � C44�k11 ÿ k�11��D0

1

�e215 � C44k11��ae215 � aC44k11 � C44k
�
11�

�B9�

For in-plane electric loading D 0
2 incited in perpendicular with crack faces:

Z �23 �
�1� a�e15�e215 � C44�k11 ÿ k�11��D0

2

2�e215 � C44k11��e215 � C44k11 � aC44k
�
11�

�B10�

Z �42 � ÿ
�1� a�C44�e215 � C44�k11 ÿ k�11��D0

2

�e215 � C44k11��e215 � C44k11 � aC44k
�
11�

�B11�

For anti-plane electric loading D 0
3 applied only:

Z �11 � Z �22

� f�C33e31 ÿ C13e33��ÿ4C13e31e33 � �C11 � C12�e233C33�2e231 � �C11 � C12��k33 ÿ k�11��

ÿ 2C 2
13�k33 ÿ k�11��D0

3g=f2C33e
2
31 ÿ 4C13e31e33 � �C11 � C12�e233 ÿ 2C 2

13k33 � �C11

� C12�C33k33g2

�B12�

Z �33 � f�2C13e31 ÿ �C11 � C12�e33��4C13e31e33 ÿ �C11 � C12�e233 ÿ C33�2e231 � �C11 � C12��k33

ÿ k�11�� � 2C 2
13�k33 ÿ k�11��D0

3g=f2C33e
2
31 ÿ 4C13e31e33 � �C11 � C12�e233 ÿ 2C 2

13k33

� �C11 � C12�C33k33g2 �B13�

Z �43 � ÿf�2C 2
13 ÿ �C11 � C12�C33��4C13e31e33 ÿ �C11 � C12�e233 ÿ C33�2e231 � �C11 � C12��k33

ÿ k�11�� � 2C 2
13�l33 ÿ k�11��D0

3g=f2C33e
2
31 ÿ 4C13e31e33 � �C11 � C12�e233 ÿ 2C 2

13k33 � �C11

� C12�C33k33g2 �B14�
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